论文部分内容阅读
作为常见的结构形式,薄壁环形工件具有质量轻、结构简单和承载能力强等特点,被广泛应用在航空航天领域,例如航空发动机的机匣、飞机机身以及卫星的壳体等,上述部件在其整机设计研发和安全运行中占有举足轻重的地位,因此对工件的加工表面质量和加工精度的要求极其严苛。但由于其壁厚较薄,刚性较差,在加工过程中极易发生剧烈的振动甚至颤振,在工件表面形成振纹,导致工件加工表面质量和加工精度下降,使得工件难以满足加工要求,因此控制工件在加工过程中的振动显得尤为重要。本文以薄壁环形工件为研究对象,采用解析建模、有限元仿真和实验验证相结合的方法对薄壁环形工件进行了振动控制和装夹布局优化等方面的研究,具体的研究内容如下:工件的振动特性是研究薄壁环形工件振动控制的基础。为了获得较为准确的模态参数,本文建立了基于LOVE壳体理论的弹性边界条件下的薄壁环形工件模态分析解析模型,并得到了边界条件为一端固支、一端自由的薄壁环形工件的振动特性。在ABAQUS中建立了薄壁环形工件有限元模型,并通过模态分析得到了工件振动特性。通过模态试验验证了建立模型的正确性。基于工件—夹具系统刚度分布特性,采用半弹性接触模型并用弹簧代替工件与夹具之间的接触刚度建立了工件—夹具系统有限元模型,通过研究不同辅助支撑布局方式对工件—夹具系统刚度分布和振动特性的影响,并与薄壁环形工件的刚度分布和振动特性对比,得到了不同辅助支撑布局方式的刚度增强和振动控制效果,并通过模态实验验证了工件与辅助支撑之间接触模型的准确性以及不同辅助支撑布局方式对工件—夹具系统振动特性的影响。为了获得满足加工精度的最优辅助支撑布局方式,本文采用了遗传算法和有限元仿真相结合的方法,以工件在加工过程中的最大变形小于给定加工精度为目标函数,建立了工件—夹具系统辅助支撑递推优化模型,得到了辅助支撑最优布局方式,并通过有限元仿真得到了该布局方式下工件—夹具系统的刚度分布和振动特性,并与未施加辅助支撑条件下薄壁环形工件的刚度分布和振动特性进行对比,验证了其振动控制效果。为了控制典型薄壁环形零件—发动机机匣在铣削加工过程中的振动,本文设计了一种同步伸缩式多点辅助支撑夹具以增强机匣的刚度,并采用控制变量法基于有限元仿真分析得到了发动机机匣在不同工装参数下的振动特性,为实际加工过程中机匣夹具工装参数的选用提供指导性意见。