论文部分内容阅读
在航空航天领域中,惯性陀螺等精密器件装配精度要求较高,目前大多采用人工装配的方法,装配效率低、装配过程受人主观影响大。针对上述存在的问题,采用基于Faster R-CNN模型的目标识别算法,通过VGG16特征提取网络提取特征信息,在模型训练过程中利用COCO数据集的深度网络模型进行迁移训练,防止模型过拟合并加速参数的训练过程。同时,该方法还与其他深度学习模型以及传统的目标识别算法进行了对比,在自建的数据模型测试集上进行试验。结果表明,基于VGG16的Faster R-CNN目标识别模型在复杂环境及物