论文部分内容阅读
管流截面流型作为描述气固两相流的重要参数之一 ,极大地影响着两相流动压力损失和传热传质等特性 ,同时还影响着其他参数 (如流量、分相含率等 )的准确测量以及流动系统的运行特性。传统的检测方法由于难以获得能真正反映流型的管道截面局部分布的实时信息 ,在工业应用中受到了限制。有鉴于此 ,在光学层析成像技术的基础上 ,提出了一种基于学习矢量量化神经网络的气固两相流流型识别方法 ,详细介绍了这种网络的结构、学习算法、训练样本集的确定等。通过计算机仿真 ,实验结果表明此方法对于气固两相流的 8种流型能有较好的