论文部分内容阅读
Without assuming the boundedness, strict monotonicity and differentiability of the activation functions, the authors utilize the Lyapunov functional method to analyze the global convergence of some delayed models. For the Hopfield neural network with time delays, a new sufficient condition ensuring the existence, uniqueness and global exponential stability of the equilibrium point is derived. This criterion concerning the signs of entries in the connection matrix imposes constraints on the feedback matrix independently of the delay parameters. From a new viewpoint, the bidirectional associative memory neural network with time delays is investigated and a new global exponential stability result is given.