论文部分内容阅读
基于多项式逼近理论,将一组Legender正交多项式做为隐含层神经元的传递函数,再以其加权和函数做为神经网络输出,从而构成一种新型的三层多输入Legender神经网络模型;采用BP学习算法,通过对历史观测样本数据的训练,调整该神经网络的权值,建立非线性时间序列辨识模型,以此预测股票价格的变化。仿真实验表明,Legender神经网络具有优良的逼近任意非线性系统的特性,且学习收敛速度很快;深发展A股预测结果为:训练次数200,最大相对误差5.41%;深证成指预测结果为:训练次数120,最大相对误差4.17%。