论文部分内容阅读
基于空间频谱,对光谱色散匀滑(SSD)技术与衍射光学器件(DOE)联用的焦面光强分布进行了严格的理论分析。与光谱色散匀滑技术联用前后,衍射光学器件焦面光强分布均可转化为一系列不同频率、不同复振幅的正余弦函数的叠加。光谱色散匀滑技术对衍射光学器件焦面光强分布空间频谱进行调制,该调制不仅与光谱色散匀滑参数,还与衍射光学器件相位分布有关。该技术使得衍射光学器件焦面光强分布变得更平缓,但要获得良好的联用性能,需根据光谱色散匀滑参数进行衍射光学器件的优化设计。在某一给定的光谱色散匀滑参数条件下,进行了衍射光学器件的优化设计。结果表明,与光谱色散匀滑技术联用后,衍射光学器件对入射波前畸变的宽容度有较大提高。
Based on the spatial spectrum, a rigorous theoretical analysis of the focal intensity distribution of spectral dispersion smoothing (SSD) and diffractive optics (DOE) has been carried out. Before and after the combination with the spectral dispersion smoothing technique, the light intensity distribution of the focal plane of the diffractive optics can be transformed into a series of superposition of the sine and cosine functions of different frequencies and complex amplitudes. The spectral dispersion smoothing technique modulates the spatial frequency spectrum of the focal plane light intensity distribution of the diffractive optics. The modulation is not only related to the spectral dispersion smoothing parameters but also to the phase distribution of the diffractive optics. The technique makes the diffractive optical device focal plane light intensity distribution more smooth, but in order to obtain a good combination of performance, according to the spectral dispersion smoothing parameters optimization optics design. Optimal design of diffractive optics is performed at a given spectral chromatic dispersion smoothing parameter. The results show that the diffractive optical device has a great improvement on the tolerance of incident wavefront aberration when combined with the spectral dispersion smoothing technique.