基于直觉模糊熵的粒子群多目标优化

来源 :计算机科学 | 被引量 : 5次 | 上传用户:chelseainter
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对现有多目标算法存在的收敛性不强、分散性不高等问题,提出了一种基于直觉模糊熵的粒子群多目标优化算法(IFEMOPSO)。首先,计算出种群的直觉模糊熵(IFE),作为衡量种群在多目标空间下多样性的测度;其次,设计基于IFE的惯性权重动态变化、外部档案调用以及变异操作等3种增强算法探索力度的策略,建立了直觉模糊多目标规划模型,有效地提高了群体进化过程中的多样性,防止了算法陷入局部收敛;最后,仿真结果表明,所提算法很好地提高了所得非劣解集的收敛性和分散性,有效地解决了多目标优化问题。
其他文献
已有的粒子群模糊聚类算法需要设置粒子群参数并且收敛速度较慢,对此提出一种基于改进粒子群与模糊c-means的模糊聚类算法。首先,使用模糊c-means算法生成一组起始解,提高粒
关于Word文档副本创建存在内容复制和文件复制两种方法,通过对OOXML文件和各类时间属性的研究和分析,有效地实现了对Word文档副本的取证,从而鉴定源文件或复制文件。
逆P-集合是具有动态特性的集合模型,逆P-集合的动态特性来自集合内元素(属性)的动态迁移:元素迁入使得集合的边界向外扩展,元素迁出使得集合的边界向内收缩,从而产生扰动的边界
传统的深度置信网络(DBNs)训练过程采用重构误差作为RBM网络的评价指标,它能在一定程度上反映网络对训练样本的似然度,但它并不是可靠的。而最大信息系数(MIC)能反映两个属性间的相关度,保留相关度较大的属性,且MIC较稳健,不易受异常值的影响,可作为网络评价指标。故提出一种基于最大信息系数(MIC)的深度置信网络方法,一方面用MIC对数据进行降维预处理,提高数据与网络的拟合度,降低网络分类误差;
非平衡数据中样本数量的不平衡分布往往伴随着特征分布的不平衡,在多数类文本中经常出现的特征,在少数类中却很少出现。针对非平衡数据特征分布的特点,提出了一种新的双边fis