论文部分内容阅读
提出一种新的针对KPCA模型的故障识别方法——贡献率图法。该方法是在微分贡献率图和核函数导数的基础上提出来的,它采用统计量丁2和SPE对每个变量的偏导数来度量每个变量对统计量丁2和SPE的贡献率。和基于数据重构法的KPCA故障识别方法相比,该方法不需要任何迭代近似计算和数据的重构,计算量小且可避免重构产生的误差对识别结果的影响。通过在某型涡扇发动机故障检测与诊断中的应用表明,该方法比基于数据重构法的故障变量识别准确率更高,再结合发动机故障机理分析,便可准确地确诊故障,从而大为缩短故障定位及排故的时间,预防