论文部分内容阅读
首先将Weierstrass定理加强为“闭区间[a,b]上的连续函数f(x)可以用有理系数多项式一致逼近”,然后建立起[a,b]上的连续函数f(x)与多项式级数之间的深刻联系,以这个多项式级数为工具,可以建立闭区间上的连续函数的集合到自然数序列的集合的一个单射,进而得到“闭区间[a,b]上的全体连续函数具有连续统的势”的著名结果。