基于拉伸因子图的低复杂度贝叶斯稀疏信号算法研究

来源 :计算机科学 | 被引量 : 0次 | 上传用户:cxqr520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
建立加性高斯白噪声的线性数学模型,针对此模型对基于稀疏贝叶斯学习的消息传递算法进行研究。对传统的因子图通过添加额外的硬约束节点得到改进的因子图,然后在改进的因子图中利用联合BP一MF规则,提出低复杂度的BP一MF SBL算法。为了进一步降低复杂度,在BP一MF SBL的基础上提出近似BP一MF SBL算法。仿真结果表明与向量形式的MF算法相比,所提方法复杂度低,且性能有所提升;与标量形式的MF算法相比,在复杂度相似的情况下,所提方法的性能更好。
其他文献
孪生支持向量机(TWSVM)目前已在众多领域取得了成功的应用,但标准TWSVM模型在处理具有分布特征的数据分类问题时鲁棒性差,尤其当数据的不确定性程度较大时,不考虑样本点分布
在大数据网络环境下,由于传统用户异常行为检测方法无法满足海量数据检测需求,对不断更新的异常行为和恶意软件无法快速地做出响应,没有考虑用户行为管理等问题,导致异常检测
针对认知无线电网络中频谱的动态特性及潜在的节点选择性转发问题,提出频谱感知安全机会路由S2OR协议。在频谱感知阶段,通过对主用户活动建模来分析认知节点之间链路的可用概率
随着电子竞技产业不断发展,除了经验、天赋、技巧等决胜因素外,数据分析对MOBA游戏的胜负手影响越来越大。针对某些MOBA类游戏无法直接通过接口获得准确数据的问题,提出根据
大型癌症基因组项目(TCGA,ICGC等)产生了大量的癌症组学数据,使人们深入研究癌症变为可能,其中寻找引发癌症的相关突变基因是一个重要挑战。在癌细胞中,基因变异可分为两类:一类是可导致癌症发生的驱动突变(driver mutation),另一类是对癌症发生扩散没有影响的乘客突变(passenger mutation)。识别癌症驱动基因有利于理解癌症发病原理和发展进程以及研发癌症药物或进行靶向治疗
随着互联网络技术的快速发展,各种恶意访问行为危及到网络的信息安全,因此辨识访问用户的角色并识别用户的恶意访问行为对于网络安全具有十分重要的理论意义和实用价值。首先,以
高级量测体系(AMI)是智能电网系统测量、接收、存储、分析和操作用户消耗数据的基础。消费者(智能电表)和公用事业之间的通信和数据传输需求使AMI的安全性显著下降。并且,随
在软件研制过程中,缺陷定位是一个重要的研究课题。但是,实际软件中的缺陷数量无法被预先判定,且已有的单缺陷定位方法不易使用,已有的多缺陷定位方法存在定位效率不高的问题
开源软件项目的缺陷管理和修复是保障软件质量及软件开发效率的重要手段,而提高软件缺陷分配的效率是其中亟需解决的一个关键问题。文中提出了一种基于文本分类和评分机制的
柴油发电机是水面无人艇(USV)的核心设备之一,其健康状态直接影响USV的航行状态。为了保证USV的健康航行,提出了一种基于卷积神经网络的健康评估方法。该方法以发电机基本参