论文部分内容阅读
传统谐波分析方法中,窄带滤波器选频法对元件参数十分敏感,受外界环境影响较大,且精度难以保证;快速傅里叶分解法会产生频谱泄漏误差,不同频率谐波之间也有干扰;神经网络分析方法检测精度高,但其基于大样本的学习方法,受样本及训练初始值影响较大,有时会导致训练不成功。为减小外界环境影响,提高检测精度和降低噪声影响,提出基于支持向量回归机的谐波分析方法,它是基于统计学习理论,以结构风险最小化为原则的机器学习,通过引入松弛变量和损失函数提高算法泛化能力和减小误差,该算法最终转化为标准二次规划问题,有全局最优解。通过算例