论文部分内容阅读
作文智能评分和评语智能生成能极大减轻评阅专家的工作量、节约人力成本。目前,评分和评语结果的准确性与公平性尚不高。近年来,机器学习和自然语言处理等技术的快速发展,在一定程度上提升了文本分类、机器翻译等任务的性能,但仍有许多新的研究成果尚未应用于作文智能评价。本研究综合了词向量(word2vec)、段落向量(paragraph2vec)、词性向量(pos2vec)和LDA(latent dirichlet allocation)等特征,共同组合为作文的语义表示向量;采用基于kNN(k nearest neig