论文部分内容阅读
选择典型的实时校正方法:传统的误差自回归、基于K最邻近算法( KNN )的非参数校正及基于Kalman滤波的多断面校正法,并以Kalman滤波与KNN结合构造综合方法,以淮河流域吴家渡-小柳巷区间作为试验河段,构建一维水动力学模型并与实时校正方法联合应用。简要介绍这4种方法的原理与模型构建方法,然后对比分析各种方法的模拟结果,尤其对模拟洪峰稳定性、峰现时间、峰现误差等进行比较,认为前3种基本方法均能在相当长的预见期内提高洪水的预报精度,而综合法实时校正法对洪峰部位的模拟更为稳定可靠、总体效果更好,更适合预