论文部分内容阅读
提出了一种改进的模糊C均值聚类算法,该算法将模糊聚类的对象从单值扩展到区间,在构造二型模糊系统时,通过对历史数据的学习提取二型模糊规则,克服了专家方法不能对未知领域提取规则的不足.在此基础上,针对智能交通系统,提出一种新的基于二型模糊逻辑的交通流量预测方法.该方法应用区间型二型模糊集具有上下限隶属度函数的性质构造预测区间,适合于处理具有复杂不确定性的情况.通过隶属度函数可以反映出该区间中预测值的可靠性,从而克服了其他预测方法仅给出单值且稳定性不高的缺点.仿真结果表明,基于二型模糊逻辑的流量预测区间具有较高