论文部分内容阅读
针对网络中存在的对等网络(P2P)流量泛滥导致的流量失衡问题,提出将非平衡数据分类思想应用于流量识别过程。通过引入合成少数类过采样技术(SMOTE)算法并进行改进,提出了均值SMOTE(M-SMOTE)算法,实现对流量数据的平衡化处理。在此基础上分别采用3种机器学习分类器:随机森林(RF)、支持向量机(SVM)、反向传播神经网络(BPNN)对处理后各类流量进行识别。理论分析与仿真结果表明,在不影响P2P流量识别准确率的前提下,与非平衡状态相比,引入SMOTE算法将非P2P流量的识别准确率平均提高了1