论文部分内容阅读
在高原山地等地类复杂地区,传统遥感分类方法和标准BP神经网络分类方法存在一定的局限性,提出了基于Matlab的遗传算法优化的BP人工神经网络遥感图像分类方法。以Matlab神经网络和遗传算法工具箱为平台,在对数据源进行主成分分析特征选择的基础上,用量化共轭梯度法改进标准BP算法,采用GA优化BP网络的隐层神经元数目和初始权重,并以香格里拉县ETM+遥感图像为例,在DEM地形数据辅助下,训练网络使其收敛,仿真输出。结果表明,该方法分类总精度为84.52%,Kappa系数为0.8317,比最大似然法分类