基于全变分和暗像素双正则多通道图像盲复原

来源 :激光与光电子学进展 | 被引量 : 3次 | 上传用户:kpdavid
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于单一全变分正则的多通道图像盲复原算法容易使复原图像产生振铃效应、丢失高频细节信息。针对这个问题,利用模糊图像暗像素的非稀疏性,提出一种基于全变分和暗像素的多通道图像盲复原算法。针对全变分和暗像素双正则模型求解难的问题,使用分裂Bregman优化算法确保结果收敛,将全局问题分解为独立的子问题,通过交替迭代图像和点扩展函数复原出目标图像。实验结果表明,所提算法能够有效去除图像模糊,抑制振铃效应,复原出高质量的清晰图像。与采用单一全变分正则项的算法相比,所提算法的峰值信噪比提高了0.12dB~5.86
其他文献
基于深度学习的目标跟踪算法将卷积深层输出结果作为特征,虽然准确度高但耗时长;基于融合特征的目标跟踪算法按照响应值融合目标特征,虽然跟踪速度快,但降低了准确度。为了兼顾目标跟踪算法的时效性和准确度,提出基于相似性特征估计的目标跟踪算法。首先利用重要性重采样滤波粒子构建目标观测模型,其中包括选择粒子状态、转移系统状态、构建观测模型、粒子权值更新以及重采样过程。在此基础上,提取目标的统计纹理特征、运动尺