短时交通流预测WT-AOSVR模型

来源 :计算机应用与软件 | 被引量 : 8次 | 上传用户:spredsheng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
AOSVR(Accurate Online Support Vector Regression)具有在线学习和模型在线更新的优点,可应用于交通流量的实时预测,其中算法的核函数的选择对模型的学习、推广和泛化能力起着重要的作用,但是至今有关核函数的选择缺乏科学的理论依据。为了进一步提高模型的学习和推广能力等,提出一种WT-AOSVR(Weight Table And Accurate Online Support Vector Regression)模型。对交通流进行数据挖掘,分类处理,构造支路AOSV
其他文献
近几年,由于打印机市场竞争十分激烈等原因,一些IT厂商退出了打印机市场,这无疑会给一些行业用户造成了新的风险点。为有效避免分散采购的不利因素和防范IT风险,越来越多的IT设备
为了提高图像分割精度和实用性,利用粗糙集和支持向量机优点,提出一种基于粗糙集和支持向量机相融合的图像分割算法。首先利用粗糙集图像区域特征进行约简,以降低特征向量维数,然后采用支持向量机对这些特征进行学习,建立图像分割模型,从而实现图像的分割。实验结果证明,该方法不仅提高了图像分割精度,大大缩短了训练时间,而且分割效果要优于常规图像分割算法,能够很好满足图像处理的实时性要求,为进行图像分割提供了一个