论文部分内容阅读
回声状态网络(ESN)是一种重要的时间序列预测方法,但在训练数据存在噪声或野点情况下,ESN将会出现过拟合问题。针对该问题,提出基于平滑消边绝对偏离罚函数的回声状态网络(SCAD-ESN)模型。不同于在模型中加入岭回归、L1范数罚函数及小波降噪等常规方法,该模型利用SCAD罚函数对变量进行选择,将小变量置为零以满足变量稀疏性,将大变量直接置为常数,从而能够很好地解决ESN过拟合问题并满足近似无偏估计。对于SCAD罚函数的非凸函数优化问题,提出基于局部二次近似(LQA)的求解方法,将最小角回归(LQR)方法