论文部分内容阅读
在非负稀疏编码(NNSC)的基础上,考虑特征基向量的稀疏度约束和特征基的局部性,提出一种基于局部特征的NNSC神经网络模型.该模型利用梯度和倍增因子相结合的优化算法实现特征系数的学习;利用倍增算法实现特征基的学习.对掌纹图像进行特征提取测试,结果表明,与传统NNSC模型和局部非负矩阵分解(LNMF)方法相比,该模型能有效提取图像的局部特征,收敛速度较快,可模拟初级视觉系统处理自然界信息的稀疏编码策略.