Distribution of heavy metals in water and sediment of an urban river in a developing country:A proba

来源 :国际泥沙研究(英文版) | 被引量 : 0次 | 上传用户:dreamlisheng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
River water and sediment embody environmental characteristics that give valuable eco-environmental information.Due to rapid industrialization,the aquatic environment of any urban river can be seriously polluted by heavy metals (HMs).The global concern is caused by heavy metal pollution because of its potential harm to aquatic ecosystems and human health.In the Bhairab River,Bangladesh,surface sediment concentrations of globally alarming toxic metals such as arsenic (As),chromium (Cr),cad-mium (Cd),and lead (Pb) were measured to determine the ecological and human health risks of the riverine ecosystem.The average As,Cr,Cd,and Pb concentrations in water were 3.55,31.74,1.44,and 23.82 μg/L respectively,and in sediment were 4.13,34.17,1.66,and 25.46 mg/kg,respectively.During the winter,metals in sediment were higher than during the summer.For most sediment samples,the enrichment factor (EF),contamination factor (CF),geoaccumulation index (Igeo),pollution load index(PLI) of As,Cr,Cd,and Pb indicated moderate contamination.The potential ecological risk (PER) in sediment followed the descending order of Cd > As > Pb > Cr.The contamination level of toxic metals implied that the condition is frightening and probably severely affecting the aquatic ecology of this riverine ecosystem.
其他文献
针对传统线性降维方法需要模态数量多、重构误差大的问题,提出一种基于卷积自编码网络的锂离子电池电极干燥流场的非线性降维技术.首先,采用大涡模拟仿真获取锂离子电池电极干燥流场的数据集;然后,利用卷积自编码网络对流场进行重构,并详细比较Mish激活函数、ReLU激活函数与传统本征正交分解(POD)的重构效果.实验表明:本文采用的卷积自编码网络在不同方向速度分量、总速度的重构效果方面优于传统的POD技术;且Mish激活函数的收敛效率与重构误差均优于传统的ReLU激活函数.本文技术能准确重构锂离子电极干燥流场,具有
针对室外场景中,因摄像头角度不统一、室外光照多变等因素导致行人难识别的问题,提出一种针对复杂场景的行人再识别优化方法.通过在ResNet的浅层嵌入实例-批归一化层和空间变换网络,引入Mish激活函数,构建改进的ResNet-50特征提取骨干网络,建立面向复杂场景的行人再识别模型.经在MSMT17数据集上验证,rank-1和mAP分别达到79.8%、58.5%,说明了该算法的有效性.