论文部分内容阅读
提出了一种神经网络模型的时间序列直接多步预测算法.网络的学习采用具有遗忘因子的BP算法与时差方法相结合的混合算法,解决了经典BP算法在直接多步预测中不能渐进计算的问题,同时网络具备一定的结构学习能力.采用该算法对现场采集的高炉铁水含硅量时间序列数据进行预报实验,表明本文提出的直接多步预测方法是可行的.