论文部分内容阅读
在自然环境下对火龙果进行实时检测是实现火龙果自动化采摘的必要条件之一。该研究提出了一种轻量级卷积神经网络YOLOv4-LITE火龙果检测方法。YOLOv4集成了多种优化策略,YOLOv4的检测准确率比传统的YOLOv3高出10%。但是YOLOv4的骨干网络复杂,计算量大,模型体积较大,不适合部署在嵌入式设备中进行实时检测。将YOLOv4的骨干网络CSPDarknet-53替换为MobileNet-v3,MobileNet-v3提取特征可以显著提高YOLOv4的检测速度。为了提高小目标的检测精度,分别设置在