论文部分内容阅读
以真实场景中拍摄的街景门牌号码图像数据集SVHN为研究对象,将卷积神经网络与支持向量机相结合,提出了一种基于改进LeNet-5的街景门牌号码快速识别方法.该方法首先对数据进行图像增强预处理,突出有效特征;然后,省去基本LeNet-5中的第3卷积层,并用SVM分类器代替最后输出层中的Softmax分类器,以简化网络结构的同时提高分类效率.在国际公开的SVHN数据集的实验结果表明,改进LeNet-5可以有效识别街景门牌号码,7h便可训练得出结构稳定的网络识别模型,识别率达到90.35%,提高了算法的综合效率.