论文部分内容阅读
并行矩阵乘法是线性代数中最重要的基本运算之一,同时也是许多科学应用的基石.随着高性能计算(HPC)向E级计算发展,并行矩阵乘法的通信开销所占比重越来越大.如何降低并行矩阵乘法的通信开销,提高并行矩阵乘的可扩展性是当前研究的热点之一.本文提出一种新型的分布式并行稠密矩阵乘算法,即2.5D版本的PUMMA(Parallel Universal Matrix Multiplication Algorithm)算法,该算法是通过将初始的进程分成c组,利用计算节点的额外内存,在每个进程组上同时存储矩阵A、B和执行1