论文部分内容阅读
磁层位于地球空间的最外层,太阳风与磁层的相互作用是空间天气变化因果链中承上启下的关键环节,是揭示地球空间天气基本规律的关键科学课题.地球空间由于时变、多成分、多自由度的关联相互作用,使得传统的理论分析变得非常困难.数值模拟作为近几十年发展起来的一个新的研究手段,对地球空间的理论和应用研究产生了深刻的影响.国际上磁层的全球MHD数值模拟工作开始于20世纪70年代末,最初的研究局限于二维空间由于磁层内在的三维特性,20世纪80年代三维MHD数值模拟工作兴起.本文简要说明了三维全球磁层MHD(磁流体力学)研究的特点及现状,给出了三维全球磁层模型的基本框架,综述了行星际激波与磁层相互作用、大尺度电流体系、重联电压和越极电位、磁层顶K-H不稳定性等方面的太阳风-磁层相互作用的MHD数值模拟的研究进展.
The magnetosphere is located in the outermost layer of Earth’s space and the interaction between the solar wind and the magnetosphere is the key link in the causal chain of space weather change and the key scientific issue for revealing the basic law of the Earth’s space weather.Due to the time-varying, multi-component, The multi-degree-of-freedom interaction makes the traditional theoretical analysis very difficult. As a new research method developed in recent decades, numerical simulation has a profound impact on the theory and application of the Earth’s space. The global MHD numerical simulation of the magnetosphere began in the late 1970s with the initial study confined to the rise of 3D MHD numerical simulations in the 1980s due to the inherent three-dimensional nature of the magnetosphere.This paper briefly describes the three-dimensional global magnetism This paper presents the basic framework of three-dimensional global magnetospheric model and summarizes the interaction between interplanetary shock and magnetosphere, the large-scale current system, the reconnection voltage and the over-pole potential, Advances in MHD Numerical Simulation of Solar Wind - Magnetosphere Interaction in Toposphere KH Instability and.