论文部分内容阅读
为充分考虑历史信息对未来导航结果的影响,并充分利用更深层次的组合导航信息进行信息融合,提出了一种基于图优化的INS/GNSS深组合导航方法.通过将量测信息和状态传播作为约束信息,在时间域上构建优化代价函数,利用列文伯格-马夸尔特法求解状态的最优估计.通过INS/GPS深组合导航系统仿真实验对该方法进行了评估和分析,仿真实验结果表明,所提算法与常规卡尔曼滤波方法相比,三轴方向的位置误差均值分别减少了38.5%,21.0%和30.9%,速度误差均值分别减少了31.4%,52.8%和57.3%,所提算法能有效提高定位精度.