基于粗糙度测量和颜色距离的织物缺陷检测方法

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:cheqiu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对周期性纹理背景影响织物缺陷检测效果的问题,提出了一种基于粗糙度测量和颜色距离的织物缺陷检测方法。该方法先将待检测图像由RGB颜色空间转换到HSV颜色空间,并分别对三通道进行同态滤波处理,以提升缺陷与背景之间的对比度;利用粗糙度测量对织物图像进行分类,并将同一类别的织物图像分成大小相同且互不重叠的图像分块,分别估计各个图像分块与其八邻域图像分块的颜色距离,从而实现对缺陷的粗定位;最后对粗定位图像分块进行显著性和二值化处理,有效减少了周期性纹理背景对检测结果的影响。实验结果表明:与近期4种方法相比,
其他文献
基于光子晶体谐振腔的耦合原理,采用环形腔与微腔结构结合的形式,设计了一种六通道波分复用器.利用平面波展开法研究了晶格常数为0.55 μm时光子晶体禁带范围随介质柱半径的
对基于法布里-珀罗(F-P)微腔结构的光纤声传感系统进行研究.传感头由具有高熔点、低热膨胀系数的氧化锆(Zr02)管贴合氧化石墨烯(GO)薄膜制作而成.测试结果显示,F-P微腔的腔长
针对图像边缘与轮廓不能精确重构的问题,提出了一种基于灰度共生矩阵的多尺度分块压缩感知算法。该算法利用三级离散小波变换将图像分解为高频部分和低频部分。通过灰度共生矩阵的熵分析高频部分图像块的纹理复杂度,并根据图像块纹理进行再分块、自适应分配采样率。采用平滑投影Landweber算法重构图像,消除分块引起的块效应。对多种图像进行压缩重构仿真,实验结果表明,无观测噪声情况、采样率为0.1时,本算法在Ma
业务流程中事件日志的分析与预测可以为流程监控和管理提供决策信息,现有研究方法多针对特定单个任务预测,不同任务间预测方法的可迁移性不高。多任务预测可以共享多个任务间的信息,提升单个任务预测的精度,但现有研究对重复活动的多任务预测效果有待提高。针对以上问题,提出一种注意力机制与双向长短时记忆结合的深度神经网络模型,实现对业务流程中重复活动和时间的多任务预测。预测模型可以共享不同任务已经学到的特征表示,