论文部分内容阅读
首先介绍了一种朴素贝叶斯增量分类模型,然后提出了一种新的序列学习算法以弥补其学习序列中存在的不足:训练实例的先验知识得不到充分利用,测试实例的完备性对分类的影响在学习过程中得不到体现等。该算法引入一个分类损失权重系数λ,用于计算分类损失大小。引入该系数的作用在于:充分利用先验知识对分类器进行了优化:通过选择合理的学习序列强化了较完备数据对分类的积极影响,弱化了噪音数据的消极影响,从而提高分类精度;弥补了独立性假设在实际问题中的不足等。