论文部分内容阅读
标准量子遗传算法(QGA)在应用于组合优化问题时,会由于早熟收敛而陷入局部最优。为解决该问题,引入k位变异子空间概念分析Q-bit的变异概率分布,指出传统随机变异机制和QGA自有变异机制之间的冲突,提出一种基于观测状态的阶段式大尺度变异机制。将该机制的变异算子嵌入量子旋转策略表,对不同规模的0/1背包问题进行测试,结果表明,该机制能有效避免早熟收敛,跳出局部最优,全局寻优能力优于标准QGA。