论文部分内容阅读
针对现有基于隐Markov模型的协议异常检测方法中存在的训练样本不足和初始参数敏感问题,提出一种基于改进遗传算法和隐Markov模型的协议异常检测新方法。首先,采用局部竞争选择策略、算术交叉算子和自适应非均匀变异算子改进遗传算法,避免传统遗传算法在收敛过程中的早熟和停滞问题;然后,利用改进的遗传算法优化隐Markov模型的初始参数,解决模型对初始参数敏感的问题;最后,以协议关键词和关键词时间间隔作为训练观测值,细粒度地描述协议行为,扩大模型的训练样本空间。在DARPA 1999数据集上的实验结果表明