论文部分内容阅读
针对长文本自动摘要任务中抽取式模型摘要较为冗余,而生成式摘要模型时常有关键信息丢失、摘要不准确和生成内容重复等问题,提出一种面向长文本的基于优势演员-评论家算法的强化自动摘要模型(A2C-RLAS)。首先,用基于卷积神经网络(CNN)和循环神经网络(RNN)的混合神经网络的抽取器(extractor)来提取原文关键句;然后,用基于拷贝机制和注意力机制的重写器(rewriter)来精炼关键句;最后,使用强化学习的优势演员-评论家(A2C)算法训练整个网络,把重写摘要和参考摘要的语义相似性(BERTSc