论文部分内容阅读
针对一类模型未知的非线性动态系统,提出了一种基于神经网络在线估计结构的鲁棒故障诊断检测方法。系统中,仅输入输出可测,且包含输出不确定性项。该方法通过构造神经网络在线逼近结构来拟合该非线性系统模型和系统的非线性故障特性,建立系统的状态观测器。神经网络的权重调整规律由李亚普诺夫稳定性方法获得,系统的输出不确定性部分被用于获得诊断算法的阈值。最后,用Matlab/SIMULINK对的算法予以验证,结果表明本算法的合理性。