基于USM的改进Retinex算法安检图像增强

来源 :计算机与数字工程 | 被引量 : 0次 | 上传用户:y567843241
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高安检图像质量,提出用Retinex算法对其进行增强处理,并对Retinex算法做了改进。改进算法首先结合反锐化掩模(Unsharp Masking,USM)算法中提高高频成分的思想,增强了安检图像的轮廓部分;然后用限制对比度自适应直方图均衡化(Contrast Limited Adaptive Histogram Equalization,CLAHE)算法增强图像对比度。实验结果和数据表明,相比传统Retinex算法增强后的安检图像,论文算法能在有效增强安检图像的同时保留图像局部信息。
其他文献
针对常用方法无法准确度量多元时间序列相似程度的问题,提出一种基于多维分段和动态权重动态时间弯曲距离的多元时间序列相似性度量方法.首先对多元时间序列进行多维分段拟合,选取拟合段的斜率、均值和时间跨度作为每一段的特征,在对多元时间序列降维的同时也保留了变量之间的相关性;然后提出一种动态权重动态时间弯曲距离度量方法计算多元时间序列特征矩阵之间的距离,避免了直接使用动态时间弯曲距离造成的畸形匹配问题.最终实验结果也验证了该方法在多种类型的数据集上都能取得较高的度量精度,表明了该方法的有效性.
为解决工控网异常入侵、水利泵站通信网安全防护的问题.论文提出一种基于深度神经网络的水利泵站工控网入侵数据的检测算法.首先针对泵站工控网内的数据进行预处理,通过自编码算法对数据进行特征提取、降维处理;利用深度神经网络模型结合受限玻尔兹曼机对各类数据进行训练,采用Adadelta算法进行网络模型的参数优化,并由Softmax分类器对工控网数据进行是否合法判别.实验数据集由底层设备实地采集到的水利泵站工控网内流动数据导入到本地数据库.实验结果表明:该方法的准确率对比深度神经网络未改进前的算法提高了3.76%,检