论文部分内容阅读
为了构建智能制造知识问答系统,促进智能制造知识传递,加快智能制造产业布局,利用深度学习算法对传统问答系统构建流程过于复杂、所需手工与先验知识要求过高、问题与答案无法有效映射等问题进行改进。采用长短记忆神经网络算法来避免一般深度学习算法在进行梯度优化时的梯度消失与梯度爆炸问题,算法中的门机制能够消除链式法则对梯度过度优化的影响,直接对句子的语义做出解析,并利用相似度计算判别回答的正确与否。通过在评测集上的验证实验表明,该语义解析方法能够显著提升问答系统的准确率。