论文部分内容阅读
研究了电力变压器有载分接开关的故障诊断问题。对变压器分接开关的故障特性及原因分析后,考虑到传统支持向量机在诊断过程中效率低下、精确度差等缺点,提出了一种改进粒子群(PSO)优化支持向量机(SVM)的故障诊断方法。首先,对粒子群算法的惯性权值和学习因子做了相应改进,克服了PSO算法后期迭代精度不高的缺点;然后,利用改进后的PSO算法优化支持向量机的主要参数;最后,仿真结果表明,改进的PSO‐SVM 算法的诊断精度和速度均高于传统诊断方法,更适合在变压器分接开关诊断中应用。