译文质量估计中基于Transformer的联合神经网络模型

来源 :中文信息学报 | 被引量 : 0次 | 上传用户:wwwdps1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
译文质量估计作为机器翻译中的一项重要任务,在机器翻译的发展和应用中发挥着重要的作用。该文提出了一种简单有效的基于Transformer的联合模型用于译文质量估计。该模型由Transformer瓶颈层和双向长短时记忆网络组成,Transformer瓶颈层参数利用双语平行语料进行初步优化,模型所有参数利用译文质量估计语料进行联合优化和微调。测试时,将待评估的机器译文使用强制学习和特殊遮挡与源语言句子一起输入联合神经网络模型以预测译文的质量。在CWMT18译文质量估计评测任务数据集上的实验结果表明,该模型显著优
其他文献
在线社交网络中,微博平台的便捷性和开放性,给信息的传播和爆发提供了很大的便利。转发是微博平台上用户的重要行为,也是信息传播的关键机制。基于转发行为,分析一条推文是否被用户转发或者一段时间后的转发量,可以使我们更好地了解信息的传播特性,探索用户的行为与兴趣,以此推进信息推荐、预防突发事件和舆情监控等应用发展。该文较为系统地梳理了预测微博是否被转发及某段时间后的转发量这两方面的相关研究工作,着重阐述了基于用户、社交和内容特征的预测模型建立的过程并评价其预测性能,分析了微博转发行为的相关预测技术面临的挑战,展望