论文部分内容阅读
为解决频偏估计中经典的M&M算法在频偏增大时信噪比门限变差的问题,提出一种改进的频偏估计算法。首先对自相关函数做预平均处理来降低噪声,然后利用预平均值做频偏粗估计,并利用粗估计值纠正相位来减轻相位模糊的问题,最后推导更加合理的窗函数并给出最终频偏估计表达式。仿真表明该算法的信噪比门限比M&M算法至少低-1 dB,且在频偏加大时仍然能保持较低的信噪比门限。在保证-3.5 dB的信噪比门限的前提下该算法的估计范围达到了理论值的90%,另外在最大自相关阶数较小时,估计精度门限优于M&M算