论文部分内容阅读
针对OTSU算法时间复杂度高、实时性差等缺点,结合粒子群算法(particle swarm optimization,简称PSO)提出了一种新的自适应动态参数控制PSO+OTSU算法。通过自适应动态调整惯性权重因子和学习因子,让处在不同位置的粒子做自己最擅长的事情,从而达到算法满足实时性的目的。通过研究自然农田环境下作物图像,提出了一种改进超绿作物图像灰度化方法。结果表明,提出的自适应算法比标准PSO+OTSU算法运行时间缩短了12.7%,错分率方差缩小了26.3%,具有更好的实时性和稳定性。最后在