网格化局部自适应DBSCAN聚类算法

来源 :重庆邮电大学学报(自然科学版) | 被引量 : 0次 | 上传用户:abc93
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
经典DBSCAN(density based spatial clustering of applications with noise)算法需要人工指定邻域半径(Eps)和点数阈值(Minpts),且均为全局参数,导致聚类准确率低.针对此问题,为了提高经典DBSCAN聚类算法的聚类准确率,基于网格划分思想,提出了一种局部自适应DBSCAN聚类算法.根据数据集自身特征生成网格空间,将特征数据映射至相应的网格空间;利用高斯核函数估计每个网格区间的局部密度;联合多维度网格密度分布信息,寻找无连接或弱连接高密度网格之间的区域,同时统计同区域的波峰数量,从而自适应确定各区域的Eps及Minpts参数;使用每个区域独有的参数作为DBSCAN算法输入,并进行聚类.实验结果表明,该算法能够在聚类过程中自适应确定每个局部区域的Eps和Minpts参数,聚类准确率高且耗时较低.
其他文献
为了有效改善现有人脸表情识别模型中存在的信息丢失严重、组件间相对空间联系不密切的问题,提出了一种改进的多尺度卷积神经网络模型,通过构建深层多尺度卷积神经网络,使模型能够挖掘出更多潜在的特征信息;通过特征融合促进信息的流通和重利用,减少池化操作所引起的重要信息丢失,使得模型具有更好的学习能力;通过控制每层多尺度卷积神经网络的卷积核大小来平衡全局特征与局部特征之间的关系,从而增强不同组件间的相对空间联系,避免了特征图通道信息的冗余.在两种不同的人脸表情识别数据集JAFFE和FER-2013上进行验证表明,算法