论文部分内容阅读
针对支持向量机(SVM)参数选择问题,通过分析SVM近似网络模型及分类原理,提出一种基于核相似性差异最大化的高斯核参数快速选择算法(MSD).同时,将MSD算法与基于交叉验证的参数搜索算法相结合,构成一种复合SVM参数选择算法(MSD-GS),实现核参数与正则化参数的快速优选.UCI数据的仿真实验表明该算法具有参数选择准确、简便快速、无需数据先验知识等优点,参数选择效果甚至优于遍历式指数网格搜索算法.优选出的参数组合能够使SVM具有较高的泛化性能.