论文部分内容阅读
针对复杂曲面轮廓度误差的求解是一个复杂的非线性寻优问题,将改进的粒子群算法与细分曲面逐次逼近的方法相结合,实现了复杂曲面轮廓度误差值的精确计算和评定结果可视化。利用双3次B样条曲面进行理论廓面的拟合,从最小条件准则出发,建立了曲面轮廓度误差的数学模型;通过细分曲面逐次逼近的方法,计算出点到曲面的最小距离。在对基本粒子群算法分析的基础上,引入了非线性动态惯性权重系数和杂交算子,提高了算法的精度和效率。以VRML作为三维展示平台、Java Applet作为控制核心,实现了面轮廓度误差评定的可视化、网络化。