论文部分内容阅读
提出了一种新的基于支持向苗的核化判别分析方法(SV—KFD).首先深入地分析了支持向量机(SVM)以及核化费舍尔判别分析(Kernel Fisher)方法的相互关系.基于作者证明的SVM本身所同有的零空间性质;SVM分类面的法向量在基于支持向量的类内散度矩阵条件下,具有零空间特性,提山了利用SVM的法向量定义核化的决策边界特征矩阵(Kernelized Decision Boundary Feature Matrix,KDBFM)的方法.进一步结合均值向量的差向量构建扩展决策边界特征矩阵(Ex—KDBFM