论文部分内容阅读
基于光谱分析数据的机械磨损状态预测有利于发现机械系统的早期磨损故障。由于神经网络对于非线性模型的辨识和非平稳信号的预测,与传统预测模型相比具有明显的优势,将神经网络预测方法运用于光谱分析,提出了基于神经网络预测的光谱分析监测技术。在预测模型中采用了在函数逼近、分类能力和学习速度均优于BP网络的径向基函数(RBF)神经网络模型,针对RBF网络的结构对于信号预测或模型辨识的精度具有影响很大的问题,提出了结构自适应RBF网络预测模型。利用遗传算法,对神经网络输入节点数、径向基函数分布系数及网络训练误差进行了优化