《糖溪帮探险记》

来源 :红领巾(3-6年级) | 被引量 : 0次 | 上传用户:ahdx2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  各种各样的小团队在男孩中间蓬勃而生,找寻着各自的乐趣。有个叫“糖溪帮”的男生六人组,就在各种不平凡的探险活动中,收获了友谊,经历了成长……
  书里讲的啥?
  在遥远的美国,有一条名叫“糖溪”的河,河边住着一群年龄相近的男孩,他们喜欢黏在一起,一起去上学,一起去冒险,共同分享生命中的快乐,也共同分担生活中的难题……
  在故事的一开始,他们认识了一位神秘的老人;在下一本书里,他们杀死了一头大黑熊;后来,他们还勇敢地捉住了一个银行劫匪……最吸引人的还是这六个小主人公,他们性格活泼,读着他们的故事,读者就好像跟他们一样成了“糖溪帮”的成员,跟他们一起冒险,跟他们一起体验勇气、友谊和信心,跟他们一起长大,跟他们一起学习树立良好的习惯和品格。
  “糖溪帮”帮规:
  1.糖溪帮每个人都要承担家务。我们是家里的一员,我们愿意承担责任。
  2.糖溪帮体恤父母,尽量不让他们着急,惹父母生气不是酷,不惹父母生气才是真酷。
  3.糖溪帮个个都不是胆小鬼,但我们不相信打架能解决问题,我们有自制力。
  4.糖溪帮不鲁莽行事,碰到危险和紧急情况,我们会保持冷静和理智。
  5.糖溪帮不说脏话,不随波逐流。
  6.糖溪帮对弟兄们信守承诺,我们认为,诚实是美德。
  7.糖溪帮尊重女生,我们认为,欺负女生是无聊的表现。
  8.糖溪帮看重智慧,热衷于学习各种知识和技能。
  9.糖溪帮有同情心,乐于帮助他人。
  马天宇
  他是马天宇,他是歌手,是演员,是无数人眼中善良可爱的大男孩。他真诚单纯、多才多艺,最重要的是,他有一颗执着于梦想的美好心灵。
  昵称:小白、宝宝、二爷、宇宝、少爷
  粉丝名:羽毛(毛毛)
  出生日期:1986年7月12日
  出生地:山东
  身高:180cm
  体重:63kg
  星座:巨蟹座
  血型:O型
  爱好:旅游、摄影、看电影、看书、听音乐、骑马、打电动
  喜欢的颜色:白、蓝
  最喜欢吃的水果:樱桃、蓝莓、香蕉
  喜欢的书籍:《牧羊少年奇幻之旅》《荆棘鸟》《假如给我三天光明》《三杯茶》等
  代表音乐作品:《该死的温柔》《真爱末年》《青衣》《夜上海》
  天宇的成长经历比较坎坷,5岁那年,他的母亲去世,父亲也因为负债而离家出走,小天宇和两个姐姐是跟着年迈的爷爷奶奶长大的。为了生计,他很小就开始挣钱养家。这样的经历也造就了天宇坚韧不拔、吃苦耐劳的优秀品质。
  2006年,经朋友鼓励,天宇参加了东方卫视的“加油!好男儿”选秀比赛。从未接受过演艺培训的他,凭借帅气的形象、出众的气质以及亲和而富于魅力的个性,一举夺得武汉赛区的冠军,更获得该节目的全国网络人气冠军。
  选秀结束后,天宇向影视歌三栖全面发展,首发唱片主打歌《该死的温柔》红遍全国。随后,他考入了北京电影学院,攻读表演。他主演的电影《异度公寓》,大型古装电视剧《黛玉传》《古剑奇谭》,新概念武侠大戏《怪侠一枝梅》等,都得到了观众的赞许与认可。演艺生涯里有挫折、有幸运、有哭笑不得、有豁然开朗,而天宇每一天都在不断地重新发现和探索自我,一点一点磨炼着,也一步一步在向着成熟迈进。
其他文献
糖尿病视网膜病变(DR)是目前公认的主要致盲疾病之一,目前传统的视网膜图像处理步骤复杂且需要大量的人力物力,缺少一种完整的自动识别系统。针对这一问题,提出一种基于改进CNN的糖尿病视网膜病变图像分类模型,即SupplementNet。该模型在原有深度学习模型的基础上,改进卷积层中激活函数来使模型尽可能多地学习图像的特征,并在相应的卷积层后对图像数据进行批量正则化处理来提高模型的泛化性能。对比实验结
色彩搭配直接关系到文创产品的文化表达是否准确。针对以往色彩搭配系统存在的色彩搭配误差较大的问题,文中基于虚拟现实技术设计提出一种专门针对文创产品色彩自动搭配的系统。将虚拟现实技术(VR技术)应用到所提系统设计中,基于B/S三层架构,设计系统框架,构架包括数据访问层、业务逻辑层和表现层。硬件选择了分光测色仪、中央处理器、存储设备、虚拟现实体感交互装置,并对4种关键设备进行详细介绍。软件部分以BP神经网络算法为核心,对RGB三色值进行训练处理,根据训练结果构建文创产品色彩自动搭配模型,实现系统软件逻辑运算分析
传统卷积神经网络(CNN)提取人脸面部年龄特征信息时受限于感受野,易导致年龄识别准确率较低,本文建立了一种基于自校准卷积残差网络(SC-ResNet)的年龄识别方法。首先对输入图片进行裁剪和归一化预处理;然后在残差网络中用3×3卷积提取局部表观特征,再通过自校准SC-block模块进一步扩大局部特征提取范围,并将两者校准融合,获得更丰富的面部语义信息;最后采用Softmax结合交叉熵损失函数进行更
当前运动视频的图像分类和识别方法存在图像识别率低、识别不清晰图像较难的问题,为解决上述问题,文中提出基于神经网络的运动视频图像分类和识别研究。采用目标轮廓周长平方比轮廓面积的方法,提取运动目标图像特征,通过提取图像特征结果设计图像分类流程,建立神经网络图像分类模型完成图像识别。针对同一元素的不同角度进行拍摄获取,采用误差反向传播算法完成神经网络下的运动视频图像分类和识别。通过仿真实验验证设计方法的
由于传统课程设计评价系统的内部评价算法性能较差,导致用户在对某课程进行评价时由于人数众多且类型不同而造成系统崩溃瘫痪。针对上述情况,文中设计一种基于人工智能技术的课程设计开放式评价系统,以提高评价系统性能。系统的硬件设计主要沿用了原有系统的硬件设备,重点对软件进行设计。系统评价软件架构是根据NCEM评价模型设计的,具有较高的通用性、实用性和扩展性,能够兼容多种算法,采用综合分析法选取评价指标,划分出多层级指标体系,并使用层次分析法建立指标的重要性标度表。为了优化评价算法,建立模糊判别矩阵进行具体的权重计算
针对汽车市场竞争不断加剧的现状,制定准确的整车需求量对制造厂的销售计划具有重要参考意义。本文提出了一种基于Prophet和LSTM(长短期记忆网络)模型相结合的组合预测模型(Prophet-LSTM)。为验证模型的可行性,对汽车价值链业务协同过程中产生的整车销售时序数据资源进行了提取,首先利用Prophet模型对原始数据集进行特征提取,然后将特征放入到LSTM模型中进行多步时间序列预测,最后将两个模型的预测值进行加权融合得到最终的预测值。与单一模型进行实验对比,结果表明,Prophet-LSTM组合模型较
青少年编程教育如今广受关注,许多培养青少年思维和提供一定基础编程教学的平台应运而生,但仍存在无法可视化或不注重实践等问题。基于可视化编程语言Blockly和便携可移植的Android平台,本文开发了青少年编程教育系统。系统实现了编程的可视化,将晦涩的代码转为可拖动的代码块,并以闯关的方式逐步引导青少年掌握代码块的使用,更适合青少年学习;掌握编程思维和基础逻辑后,系统还提供了音乐创作等模块,供青少年自主创作,巩固学到的知识。
基于深度学习的超分辨算法研究发展迅速,所采用的模型主要由深度卷积神经网络组成。为了提升超分辨算法的性能,目前的做法主要是堆叠多层基本卷积神经网络或是设计足够复杂的网络结构来提升模型的表征能力。但这也导致模型的训练周期长,设计复杂度高,得到的模型参数量大,模型部署在实际终端中推理速度慢。因此,本文提出了基于多分支卷积重参数化算法,将系统的训练模型和部署模型进行分离,系统训练模型保证了经过训练后的模型
为了高效快速地检测相似的数字视频,设计和开发出一种基于感知哈希的视频拷贝检测软件。本文使用Python语言和OpenCV3实现一种基于低秩稀疏分解和离散小波变换的视频哈希算法,并通过PyQt5工具包设计图形化交互界面。本文所设计和开发的软件界面简洁美观,操作简便,实现了视频哈希的提取和相似视频检测等功能。
如今毫米波雷达被广泛应用于无人驾驶系统中。随着车载毫米波雷达分辨率的提高,雷达从同一目标处获得的数据量也随之增多。同一目标的数据量增多能够让系统更准确地分析目标,但目标数据集数据量的增多会导致无人驾驶系统对目标数的判断受到影响。因此需要利用合适的聚类算法处理车载毫米波雷达的目标数据集来简化目标数量。DBSCAN聚类算法在处理数据密度均匀的数据集时性能良好。但车载毫米波雷达的目标数据集密度不均匀,导致DBSCAN聚类算法应用于车载毫米波雷达聚类时聚类结果与探测场景存在偏差。为了解决上述问题,本文提出了一种车