论文部分内容阅读
增量学习是通过从已知样本出发对未知样本进行识别和分类,并能够继续学习的方法和原则。论文在分析了HS-SVM的理论基础后,基于Joachims的直推式SVM分类算法,提出了直推式THS-SVM算法,同时,独立提出了简单自学习的SHS-SVM学习方法。THS-SVM和SHS-SVM能够在训练过程中不断学习无标签样本的信息。实验表明将THS-SVM和SHS-SVM用于基于内容的图像检索是有效的。