论文部分内容阅读
针对中文短文本分类问题,从集成学习的角度提出一种基于多元概率推理模型的书写纹识别方法。将初始样本集划分为等粒度、可交叉的样本子集,构造具有差异性的子空间,在各子空间上采用基于概率推理模型的基分类器训练样本,通过概率求和法融合所有基分类器的输出得到训练样本的最终识别结果。实验结果表明,该方法对于网络书写纹具有较好的识别效果,查全率、查准率和F1度量值分别高达81.6%、85.9%和83.69%。