论文部分内容阅读
深度学习技术在多种视觉任务中表现出优异的性能,特别是深度学习技术的发展大大促进了细粒度图像识别任务的进步.细粒度图像识别的目的在于正确识别子对象类别,例如鸟类中的不同子类别.由于细粒度图像数据通常需要具有专家知识才能够进行有效识别与标注,获取难度比较高,同时,由于细粒度类别直接具有小的类间差异性和大的类内差异性特点,需要模型能够捕捉到细微的有区分性的局部特征,这两方面原因导致这项任务极具挑战性.首先,介绍了深度学习技术的重要发展历程、细粒度图像识别任务的特点和挑战.随后,介绍了基于深度学习的细粒度识