论文部分内容阅读
摘要 实验力学是固体力学专业的一门主要专业技术课,本实验报告是在西南交通大学力学实验中心(力学国家级实验教学示范中心)完成。基于实验力学的理论,本实验将研究大致五类实验,分别是:标定器试验、弯曲拉伸试验、K片测量试验、COD引伸计标定、柔度法测试断裂力学等。试验过程均由学生自己设计,学生必须独立思考,自己动手分析问题、解决问题,此过程使同学们得到很大的锻炼。
关键词 应变片;静态应变仪;动态应变仪;电桥;拉伸机
中图分类号 G64 文献标识码 A 文章编号 1673-9671-(2010)082-0141-01
1 标定试验
1.1 利用YE29003B应变标定仪标定动态应变仪
1)将YE29003B应变标定仪接入动态应变仪中:接完后相应的接口通道指示灯变暗,选折合适的拱桥电压和增益。本文选取:10V和2K欧姆,通道为3通道。
2)先将YE29003B应变标定仪拨到0欧姆,然后将动态应变仪选定通道电压调零,按下AUTO按钮机器会自动调零,若没有完全为零,可以用螺丝刀调节左边的微调FINE。
3)将YE29003B应变标定仪拨到1000欧姆,调节动态应变仪选定通道电压,并使其成为整数。
4)将YE29003B应变标定仪分别拨到800、600、400、200、0欧姆,记录每组的电压。
5)处理数据、得到回归曲线,由图可知应变与电压的关系。
1.2 模拟标定动态应变仪
本实验是用固定电阻和可变电阻接好电桥,模拟应变。因为应变片的工作原理就是,在某变形点应变片会随之变形,从而自身电阻改变,导致电桥不平衡。如此标定动态应变仪时完全可以用可调电阻代替应变片。
将可变电阻调到59880欧姆,将动态应变仪调零后接入刚调好的可变电阻,再将接入可变电阻后的电压调到整数。
依次调节可变电阻使分别其为74880欧姆、99880欧姆、149880欧姆、299880欧姆,并照如上操作得到五组电压如下表:,然后和YE29003B应变标定仪得出结论比较。
2 弯曲、拉伸试验
2.1 拉伸试验测量弹性模量E,泊松比v
1)应变片的粘贴、连接仪器。因为要测两个量故使用两片应变片,一片测纵向,另一片测横向,贴片贴好后将两片应变片接入YE2538A程控静态应变仪的两个不同通道中,并接成1/4桥电路,其中纵向应变接入通道1,横向应变片接入通道2。
2)试样加载、数据收集。摇动YE6253多功能材料力学试验台的加力手柄,使试样受拉,同时YE2538A程控静态应变仪会显示拉力和应变,选取合适的数据并记录。本文中以拉力为准,大约隔50N到100N记录一组数据。每次记录时先点通道1,记录纵向应变,再点通道2,记录横向应变。
3)数据处理,计算E和v。用Excel处理得到的数据并绘图,由竖向应变-应力图可得弹性模量E。由竖向应变和横向应变可得泊松比v。
2.2 弯曲试验正应力试验
1)试验用三点弯梁、应变片粘贴及电桥接法。本实验所用材料为已粘贴好五片应变片的三点弯曲梁:五片应变片(至上而下)本别测量上表面、中性层与上表面间、中性层、中性层与下表面间、下表面五个位置的应变,故有五片应变片接入YE2538A程控静态应变仪中,每片接入不同的通道中,规定应变片按至上而下的顺序接入通道1至通道5。
2)测量五点应变并与理论作比较。实验前先调零,测试时将拉力规定为某一特定值,本文使用600N,加载后先按通道1,记录上表面应变片的应变,以此类推测得其他点的应变。为消除误差,此过程复测量三次,每次拉力一定,取三组数据平均值。最后与理论值比较,得应变平均值,实际应力值,应力理论值和相对误差=|σ实-σ|/σ。
3 K片的测定
3.1 试验材料及方法描述
本实验用的是截面为18.1*18.1的正方形梁,简支梁表面放一幅梁,中点受集中力并用千分尺测梁中点位移。应变片贴在上下表面,测出梁上下表面的应变量。由《力学CAT基础》推导K片的值。
3.2 K片的推导
根据《力学CAT基础》,纯弯梁应变与应变片电阻率测量装置如下图所示。供货应变片粘贴在梁的纯弯区段内下表面,应变片纵向与梁的轴线方向重合,给定载荷后通过绕度计测量纯弯梁在加力线上的位移f,并由材料力学梁弯曲公式计算出应变片粘贴处梁的应变:
ε纵=fh/(l2+f2+fh)
1)用电阻仪表在贴片前测出应变片的阻值R;
2)将应变片和温度补偿片接入应变仪桥路调零后,按给定载荷P加载到位后测出应变仪的电压输出V;
3)将载荷卸去并使应变仪调零,随后对测量应变片电阻并联一个可调电阻仪,而后调并联电阻值到Rn,使对应应变仪的输出电压仍为V。此时应变片和外并电阻Rn的总电阻为:RRn/(R+Rn);
4)根据1)、3)步得到的电阻数值可以求出电阻变化率为:
ΔR/R=[RRn/(R+Rn)-R]/R=-R/(R+Rn)
5)灵敏系数Κ片的测量结果为:
Κ片=|ΔR/R|/ε纵=|ΔR/R|l2/fh
3.3 测量ε仪、千分表读数f
测出数据千分表读数f,ε仪(µε),ε纵(µε),△R/R,拉力(N)。由ε纵(µε)—△R/R曲线可得K片的大小。
4 COD引伸计标定、测量裂纹长度
4.1 COD引伸计侧线
因COD引伸计的五条输出线是混乱的我们必须对此整理,方法如下:
首先,COD引伸计内部桥路如下:
引线是4条桥线加一条地线,每个电阻120欧姆
如对于1线,将其和其他颜色的先接到欧姆表上若读数为90可知是1、4两端或1、3两端,二若欧姆表上若读数为120可知是1、2两端,这样便知道电桥的内部链接只要将对面的两端接入YE29003A盒中的V+、V—,或IN+、IN—中即可。
4.2 COD引伸计位移与动态应变仪电压的关系
在使用COD引伸计前必须标定引伸计位移与动态应变仪电压的关系,只有这样才可进行下一步试验。
4.3 测量裂纹长度
(本实验使用柔度法来测量裂纹长度,试验在弹性范围内进行,每次试验加载一次并马上卸载同时记录载荷与位移关系。
根据SET柔度公式:a/w=β0+β1µ 其中:β0=1.0056;β1=-2.8744
µ=1/(1+sqrt(E`*BefC));Bef=B-(B-Bn)/B
a是裂纹长度;B为式样的厚度,W为其宽度;测得B=2mm,W=18mm,E是弹性模量,C是测得的柔度即本实验的δ。
将数据代入得:a。
参考文献
[1]蔡立勋.力学CAT.西南交通大学.
[2]Sebastian Cravero,Claudio Ruggieri,Estimation procedure of J-resistance curves for SE(T) fracture specimens using unloading compliance,Department of Naval Architecture and Ocean Engineering, Av. Prof. Mello Moraes.
关键词 应变片;静态应变仪;动态应变仪;电桥;拉伸机
中图分类号 G64 文献标识码 A 文章编号 1673-9671-(2010)082-0141-01
1 标定试验
1.1 利用YE29003B应变标定仪标定动态应变仪
1)将YE29003B应变标定仪接入动态应变仪中:接完后相应的接口通道指示灯变暗,选折合适的拱桥电压和增益。本文选取:10V和2K欧姆,通道为3通道。
2)先将YE29003B应变标定仪拨到0欧姆,然后将动态应变仪选定通道电压调零,按下AUTO按钮机器会自动调零,若没有完全为零,可以用螺丝刀调节左边的微调FINE。
3)将YE29003B应变标定仪拨到1000欧姆,调节动态应变仪选定通道电压,并使其成为整数。
4)将YE29003B应变标定仪分别拨到800、600、400、200、0欧姆,记录每组的电压。
5)处理数据、得到回归曲线,由图可知应变与电压的关系。
1.2 模拟标定动态应变仪
本实验是用固定电阻和可变电阻接好电桥,模拟应变。因为应变片的工作原理就是,在某变形点应变片会随之变形,从而自身电阻改变,导致电桥不平衡。如此标定动态应变仪时完全可以用可调电阻代替应变片。
将可变电阻调到59880欧姆,将动态应变仪调零后接入刚调好的可变电阻,再将接入可变电阻后的电压调到整数。
依次调节可变电阻使分别其为74880欧姆、99880欧姆、149880欧姆、299880欧姆,并照如上操作得到五组电压如下表:,然后和YE29003B应变标定仪得出结论比较。
2 弯曲、拉伸试验
2.1 拉伸试验测量弹性模量E,泊松比v
1)应变片的粘贴、连接仪器。因为要测两个量故使用两片应变片,一片测纵向,另一片测横向,贴片贴好后将两片应变片接入YE2538A程控静态应变仪的两个不同通道中,并接成1/4桥电路,其中纵向应变接入通道1,横向应变片接入通道2。
2)试样加载、数据收集。摇动YE6253多功能材料力学试验台的加力手柄,使试样受拉,同时YE2538A程控静态应变仪会显示拉力和应变,选取合适的数据并记录。本文中以拉力为准,大约隔50N到100N记录一组数据。每次记录时先点通道1,记录纵向应变,再点通道2,记录横向应变。
3)数据处理,计算E和v。用Excel处理得到的数据并绘图,由竖向应变-应力图可得弹性模量E。由竖向应变和横向应变可得泊松比v。
2.2 弯曲试验正应力试验
1)试验用三点弯梁、应变片粘贴及电桥接法。本实验所用材料为已粘贴好五片应变片的三点弯曲梁:五片应变片(至上而下)本别测量上表面、中性层与上表面间、中性层、中性层与下表面间、下表面五个位置的应变,故有五片应变片接入YE2538A程控静态应变仪中,每片接入不同的通道中,规定应变片按至上而下的顺序接入通道1至通道5。
2)测量五点应变并与理论作比较。实验前先调零,测试时将拉力规定为某一特定值,本文使用600N,加载后先按通道1,记录上表面应变片的应变,以此类推测得其他点的应变。为消除误差,此过程复测量三次,每次拉力一定,取三组数据平均值。最后与理论值比较,得应变平均值,实际应力值,应力理论值和相对误差=|σ实-σ|/σ。
3 K片的测定
3.1 试验材料及方法描述
本实验用的是截面为18.1*18.1的正方形梁,简支梁表面放一幅梁,中点受集中力并用千分尺测梁中点位移。应变片贴在上下表面,测出梁上下表面的应变量。由《力学CAT基础》推导K片的值。
3.2 K片的推导
根据《力学CAT基础》,纯弯梁应变与应变片电阻率测量装置如下图所示。供货应变片粘贴在梁的纯弯区段内下表面,应变片纵向与梁的轴线方向重合,给定载荷后通过绕度计测量纯弯梁在加力线上的位移f,并由材料力学梁弯曲公式计算出应变片粘贴处梁的应变:
ε纵=fh/(l2+f2+fh)
1)用电阻仪表在贴片前测出应变片的阻值R;
2)将应变片和温度补偿片接入应变仪桥路调零后,按给定载荷P加载到位后测出应变仪的电压输出V;
3)将载荷卸去并使应变仪调零,随后对测量应变片电阻并联一个可调电阻仪,而后调并联电阻值到Rn,使对应应变仪的输出电压仍为V。此时应变片和外并电阻Rn的总电阻为:RRn/(R+Rn);
4)根据1)、3)步得到的电阻数值可以求出电阻变化率为:
ΔR/R=[RRn/(R+Rn)-R]/R=-R/(R+Rn)
5)灵敏系数Κ片的测量结果为:
Κ片=|ΔR/R|/ε纵=|ΔR/R|l2/fh
3.3 测量ε仪、千分表读数f
测出数据千分表读数f,ε仪(µε),ε纵(µε),△R/R,拉力(N)。由ε纵(µε)—△R/R曲线可得K片的大小。
4 COD引伸计标定、测量裂纹长度
4.1 COD引伸计侧线
因COD引伸计的五条输出线是混乱的我们必须对此整理,方法如下:
首先,COD引伸计内部桥路如下:
引线是4条桥线加一条地线,每个电阻120欧姆
如对于1线,将其和其他颜色的先接到欧姆表上若读数为90可知是1、4两端或1、3两端,二若欧姆表上若读数为120可知是1、2两端,这样便知道电桥的内部链接只要将对面的两端接入YE29003A盒中的V+、V—,或IN+、IN—中即可。
4.2 COD引伸计位移与动态应变仪电压的关系
在使用COD引伸计前必须标定引伸计位移与动态应变仪电压的关系,只有这样才可进行下一步试验。
4.3 测量裂纹长度
(本实验使用柔度法来测量裂纹长度,试验在弹性范围内进行,每次试验加载一次并马上卸载同时记录载荷与位移关系。
根据SET柔度公式:a/w=β0+β1µ 其中:β0=1.0056;β1=-2.8744
µ=1/(1+sqrt(E`*BefC));Bef=B-(B-Bn)/B
a是裂纹长度;B为式样的厚度,W为其宽度;测得B=2mm,W=18mm,E是弹性模量,C是测得的柔度即本实验的δ。
将数据代入得:a。
参考文献
[1]蔡立勋.力学CAT.西南交通大学.
[2]Sebastian Cravero,Claudio Ruggieri,Estimation procedure of J-resistance curves for SE(T) fracture specimens using unloading compliance,Department of Naval Architecture and Ocean Engineering, Av. Prof. Mello Moraes.