论文部分内容阅读
通过对Buschow提出的预测二元非晶态合金晶化温度的“最小空位”模型进行扩展,并进一步结合Miedema理论得到了一种预测三元非晶态合金晶化温度和晶化驱动力的理论方法.利用该方法计算了(Mg70.6Ni29.4)1-xNdx(x=5,10,15)非晶态合金的晶化温度、晶化驱动力以及晶化焓.其中晶化温度和晶化焓的理论预测值与实验值的相对误差分别小于8%和7%.同时发现较高的晶化驱动力会降低合金作为镍氢电池负极材料使用时的放电容量保持率.对于Nd含量在1%—20%的非晶态合金,计算结果表明当Nd含量为6.3%时,其晶化驱动力最低,作为镍氢电池负极片用储氢合金使用时,易于获得较高的充放电循环性能.
By extending Buschow’s model of “minimum space” predicting the crystallization temperature of binary amorphous alloys, and combining with Miedema’s theory, a new method to predict the crystallization temperature and crystallization driving force of ternary amorphous alloys The crystallization temperature, crystallization driving force and crystallization enthalpy of (Mg70.6Ni29.4) 1-xNdx (x = 5,10,15) amorphous alloy were calculated by this method. The crystallization temperature And the enthalpy of crystallization are less than 8% and 7% respectively, and the higher crystallization driving force will reduce the discharge capacity retention when the alloy is used as the negative electrode material of NiMH battery.For Nd The content of 1% -20% of the amorphous alloy, the calculated results show that when the Nd content of 6.3%, the crystallization of the lowest driving force, as a nickel-metal hydride battery negative electrode hydrogen storage alloy, easy to get a higher charge Discharge cycle performance.